Administrator Assignment Dec_8_Review due 12/08/2015 at 09:45am PST

1. (1 pt) Library/UMN/calculusStewartCCC/s_11_10_13.pg Find the first five non-zero terms of Taylor series centered at x = 3 for the function below.

$$f(x) = e^x$$

What is the radius of convergence? Answer: $R = ___$

2. (1 pt) Library/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition-/10_Infinite_Series/10.7_Taylor_Series/10.7.3.pg

Find the Maclaurin series and corresponding interval of convergence of the following function.

$$f(x) = \frac{1}{1 - 4x}$$

 $f(x) = \sum_{n=0}^{\infty} \dots$

The interval of convergence is: _____

Solution: (*Instructor solution preview: show the student solution after due date.*)

Solution:

Substituting 4x for x in the Maclaurin series for $\frac{1}{1-x}$ gives

$$\frac{1}{1-4x} = \sum_{n=0}^{\infty} (4x)^n$$

This series is valid for |4x| < 1, or $|x| < \frac{1}{4}$. Thus, the interval of convergence is $(-\frac{1}{4}, \frac{1}{4})$.

3. (1 pt) Library/Utah/AP_Calculus_I/set14_Review/1250s14q31.pg Taylor and MacLaurin Series: Consider the approximation of the exponential by its third degree Taylor Polynomial: $e^x \approx P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$.

Compute the error $e^x - P_3(x)$ for various values of *x*:

 $\begin{array}{l} e^0 - P_3(0) = \underline{\qquad}, \\ e^{0.1} - P_3(0.1) = \underline{\qquad}, \\ e^{0.5} - P_3(0.5) = \underline{\qquad}, \\ e^1 - P_3(1) = \underline{\qquad}, \\ e^2 - P_3(2) = \underline{\qquad}, \\ e^{-1} - P_3(-1) = \underline{\qquad}, \end{array}$

4. (1 pt) Library/Utah/Calculus_II/set9_Infinite_Series/set9_pr13.pg Suppose that f(x) and g(x) are given by the power series $f(x) = 3 + 7x + 3x^2 + 2x^3 + \cdots$ and $g(x) = 7 + 8x + 5x^2 + 4x^3 + \cdots$.

By multiplying power series, find the first few terms of the series for the product

 $h(x) = f(x) \cdot g(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$

5. (1 pt) Library/Michigan/Chap10Sec2/Q31.pg

By recognizing each series below as a Taylor series evaluated at a particular value of *x*, find the sum of each convergent series.

A. $1 + 3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!} + \dots + \frac{3^n}{n!} + \dots =$ **B.** $1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + (\frac{1}{3})^4 + \dots + (\frac{1}{3})^n + \dots =$

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

 $c_0 = _$

*c*₂ = _____

 $c_3 = _$

A. This is the series for e^x with x replaced by 3, so the series converges to e^3 .

B. This is the series for $\frac{1}{1-x}$ with *x* replaced by $\frac{1}{3}$, so the series converges to $\frac{1}{1-\frac{1}{x}}$.

6. (1 pt) Library/Indiana/Indiana_setSeries8Power/eva8_5a_2.pg Find all the values of x such that the given series would converge.

$$\sum_{n=1}^{\infty} \frac{(11x)^n}{n^4}$$

The series is convergent

from x =___, left end included (Y,N): ____ to x =___, right end included(Y,N): ____

Solution: (*Instructor solution preview: show the student solution after due date.*)

Solution:

We must find the interval of convergence. We use the ratio test, which is very trustworthy for this purpose:

$$\lim_{n \to \infty} \left| \frac{\left(\frac{(11x)^{n+1}}{(n+1)^4}\right)}{\left(\frac{(11x)^n}{n^4}\right)} \right| = \lim_{n \to \infty} \left| \frac{11x}{\left(\frac{n+1}{n}\right)^4} \right| = |11x|$$

Then we use the resulting expression to get the interval of convergence by checking when it is less than 1:

$$|11x| < 1 \iff |x| < \frac{1}{11} \iff \frac{-1}{11} < x < \frac{1}{11}$$

Thus we must simply check endpoints now.

1 ((...) n | 1) ...

When
$$x = \frac{-1}{11}$$
:

$$\sum_{n=1}^{\infty} \frac{(11x)^n}{n^4} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$

This is convergent by the alternating series test, since clearly $\frac{1}{n^4}$ approaches 0.

When
$$x = \frac{1}{11}$$
:

$$\sum_{n=1}^{\infty} \frac{(11x)^n}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^4}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

This is convergent as a p-series by box 1, p.716.

7. (1 pt) Library/ma123DB/set13/s11_12_16.pg

Find $T_5(x)$, the degree 5 Taylor polynomial of the function $f(x) = \cos(x)$ at a = 0.

 $T_5(x) =$ _____

Find all values of x for which this approximation is within 0.004906 of the right answer. Assume for simplicity that we limit ourselves to $|x| \le 1$.

$$|x| \leq 1$$

8. (1 pt) Library/Michigan/Chap10Sec4/Q15.pg

What is the minimal degree Taylor polynomial about x = 0 that you need to calculate sin(1) to 3 decimal places?

degree = ____

To 6 decimal places?

degree = ____

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

By using the Error Bound for Taylor Polynomials, if we approximate sin(1) using the n^{th} degree polynomial, the error is at most $\frac{1}{(n+1)!}$. For the answer to be correct to four decimal places, the error must be less than 0.0005. Thus, the first *n* such that $\frac{1}{(n+1)!} < 0.0005$ will work. In particular, this is first true when n = 6.

For 6 decimal places, we need $\frac{1}{(n+1)!} < 5 \times 10^{-7}$, for which n = 9 works.